国产综合久久久久_国产精品爽爽va在线观看无码_榴莲榴莲榴莲榴莲官网_亚洲色国产欧美日韩

供求商機
您現在的位置:首頁 > 供求商機 > 英國Ossila鈣鈦礦產品

英國Ossila鈣鈦礦產品

英國Ossila鈣鈦礦產品
點擊放大
供應數量:
4226
發布日期:
2025/10/4
有效日期:
2026/4/4
原 產 地:
英國
已獲點擊:
4226
產品報價:
  [詳細資料]

只用于動物實驗研究等

I101 perovskite Ink has been specially formulated in the Ossila laboratories to be deposited by spin coating. Our I101 perovskite ink is designed for air processing in low-humidity environments. Using a mixture of methyl ammonium iodide (MAI) and lead chloride (PbCl) dissolved in dimethyl formamide our I101 perovskite ink will convert to a methylammonium lead halide perovskite under heat. The final product is a methylammonium lead iodide perovskite with trace amounts of chlorine given by the formula CH3NH3PbI3-xClx. For information on the various applications of the mixed halide CH3NH3PbI3-xClx perovskite see our applications section.

The main use of CH3NH3PbI3-xClx is in the fabrication of solar cells, our I101 ink can be used in both standard and inverted architectures; and can achieve power conversion efficiency (PCE) values of over 13% (see our device performance section for more information). The ink specifications can be found below along with complete guides on the processing of perovskite inks for standard architecture and inverted architectures. Using our I101 recipe provided, 5ml of solution is capable of processing up to 160 substrates (1,280 devices using our 8-pixel substrate design).

 

Perovskite Ink

I101 is packaged as 10 individual vials containing 0.5 ml of solution capable of coating up to 160 substrates. I101 can also be bought in bulk (30 ml) with a 25% discount over our standard order sizes.

 

Specifications

 

Perovskite Type

CH3NH3PbI3-xClx

Precursor Materials

Methyl Ammonium Iodide (99.9%), Lead Chloride (99.999%)

Precursor Ratio

3:1

Solvent

Dimethyl Formamide (99.8%)

Optical Bandgap

1.56-1.59eV

Energy Levels

Valence Band Minimum 5.4eV, Conduction Band Minimum 3.9eV

Emission Peak

770-780nm (PL); 755-770nm (EL)

Standard Architecture PCE

13.7% Peak; 13.0% ±0.25% Average

Inverted Architecture PCE

13.1% Peak; 11.9% ±0.50% Average

Processing Conditions

Air processing; low humidity (20% to 35%)

Packaging

10x 0.5ml sealed amber vials; 3 x 10ml sealed amber vials

 

I101 Perovskite Applications

Perovskite Photovoltaics

The single biggest application of perovskite materials is for photovoltaic devices; perovskites fabricated from MAI:PbCl precursors have been used in several papers to achieve high power conversion efficiencies. The advantage of using MAI:PbCl as precursor materials is the ability to process in an ambient environment.

References

  • Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. J. Snaith et. al. Science. 338 (2012) 643-647 DOI: 10.1126/science.1228604
  • Additive enhanced crystallization of solution-processed perovskite for highly efficient planar- heterojunction solar cells. K-Y. Jen et. al. Adv. Mater. 26 (2014) 3748-3754 DOI: 10.1002/adma.201400231
  • Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. J. Snaith et. al. 24 (2014) 151-157 DOI: 10.1002/adfm.201302090

 

Perovskite LED and Lasing

Due to the high photoluminescence quantum yield of perovskites at room temperature, the application of these materials in light-emitting diodes (LEDs) is of great interest. Devices made using MAI:PbCl precursors show strong emission in the near-infrared region at 755nm. Additionally, recent work has shown lasing within this material.

References

  • Bright light-emitting diodes based on organometal halide perovskite. R. H. Friend et. al. Nature Nanotechnology, 9 (2014) 687-692 doi:10.1038/nnano.2014.149
  • Interfacial control towards efficient and low-voltage perovskite light-emitting diodes. Hang et. al. Adv. Mater. 27 (2015) 2311-2316 DOI: 10.1002/adma.201405217
  • High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. H. Friend et. al. J. Phys. Chem. Lett. 5 (2014)1421-1426 DOI: 10.1021/jz5005285

 

Scale-Up Processing

Due to the ability to process perovskites based upon MAI:PbCl precursors in air, the material opens up the possibility of applications in large-scale deposition techniques. Several different scalable techniques, such as slot-die coating and spray coating have been used to deposit this material.

References

  • Upscaling of perovskite solar cells: Fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. C. Krebs et. al. Adv. Energy Mater. 5 (2015) 1500569 DOI: 10.1002/aenm.201500569
  • Highly efficient, felixble, indium-free perovskite solar cells employing metallic substrates, M. Watson et. al. J. Mater. Chem. A, 3 (2015) 9141-9145 DOI: 10.1039/C5TA01755F
  • Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. G. Lidzey et. al. Energy Environ. Sci. 7 (2014) 2944-2950 DOI: 10.1039/C4EE01546K

 

I101 Perovskite Processing Guides

Standard Architecture:

FTO/TiO2(Compact)/TiO2(Mesoporous)/I101/Spiro-OMeTAD/Au

Below is a condensed summary of our fabrication routine for standard architecture devices using our I101 ink.

 

  1. FTO etching:
  • A complete guide to FTO etching can be found on our FTO product page along with an instructional video
  1. Substrate cleaning:
  • Sonicate FTO for 5 minutes in hot (70°C) DI water with the addition of 1% Hellmanex
  • Dump-rinse twice in boiling DI water
  • Sonicate FTO for 5 minutes in Isopropyl alcohol
  • Dump-rinse twice in boiling DI water
  • Dry FTO using filtered compressed gas
  • Place the FTO into the UV Ozone Cleaner and leave for 10 minutes
  1. Compact TiO2 deposition:
  • Prepare a solution of titanium diisopropoxide bis(acetylacetonate) at a volumetric percentage of 8% in isopropyl alcohol (approximay 20ml will be needed)
  • Mask off the substrates such that only the active area of the devices are exposed
  • Place the substrates onto a hotplate set to 450°C
  • Using a nitrogen/compressed air gun set it to a pressure of 16-18 psi and spray the solution onto the substrates. Leave the solution for 30 seconds to dry, and sinter and repeat the spray process again. Repeat this until you get approximay 40 nm of film, this should take around 10 sprays
  • Cover the substrates loosely with foil and leave to sinter for 30 minutes
  • After sintering remove the substrates from the hotplate, care should be taken as rapid cooling can shatter the substrate
  1. Mesoporous TiO2 deposition:
  • Using a mesoporous paste with a particle size of 18nm and pore size of 30nm, prepare a mesoporous film of approximay 200 nm thick
  • Place the substrates back on the hotplate, loosely cover with foil and sinter the substrates at 450°C for 1 hour
  • After sintering remove the substrates from the hotplate, care should be taken as rapid cooling can shatter the substrate
  1. Perovskite deposition (in air):
  • Heat I101 ink for at least 2 hours at 70°C to allow for complete redissolution of solutes
  • Allow I101 ink to cool to room temperature before deposition
  • Set the hotplate temperature to 90°C
  • Static spin coating: place substrate into spin coater, dispense 30-50 μl and start spinning at 2000 rpm for 30 s
  • Place substrate onto the hotplate and anneal for 120 minutes
  • After all FTO substrates are coated, reduce the hotplate temperature to 90°C
  • After annealing, transfer the substrates into a glovebox environment.
  1. Spiro-OMeTAD deposition (in air):
  • Prepare the following solutions; Spiro-OMeTAD at a concentration of 97 mg/ml in chlorobenzene, Li-TFSI at a concentration of 175 mg/ml in acetonitrile, and TBP at a volumetric percentage of 46.6% in acetonitrile
  • Combine 1000 μl Spiro-OMeTAD, 30.2 μl Li-TFSI, and 9.7 μl TBP solutions
  • Dispense 50 µl of the combined solution onto the perovskite, allowing it to spread across the substrate
  • Spin at 2000 rpm for 30 seconds
  • Use a high-precision mirco cleaning swab soaked in chlorobenzene to wipe the cathode strip clean
  1. Spiro-OMeTAD oxidation and anode deposition:
  • Place the substrates inside a desiccator in air and leave the substrates for 12 hours in the dark to allow for oxidation of the spiro-OMeTAD film (The amount of time required for complete oxidation of the spiro-OMeTAD may vary depending upon thickness and environmental conditions. Additional oxidation steps may be needed after deposition of anode)
  • Using thermal evaporation, deposit an 80 nm layer of gold through a shadow mask to define an active area for your device
  • Devices do not need to be encapsulated for measuring performance
  • If encapsulation is desired, the spiro-OMeTAD should be allowed to fully oxidise again before substrates are transferred into the glovebox and encapsulated

Inverted Architecture:

ITO/PEDOT:PSS/I101/PC70BM/Ca/Al

For a complete step-by-step guide please see our full perovskite solar cells fabrication guide or our instructional video guide below.

Below is a condensed summary of our routine, which is also available to download as a PDF to enable you to print and laminate for use in the clean room.

 

  1. Substrate cleaning:
  • See substrate cleaning section of standard architecture device guide
  1. PEDOT:PSS deposition:
  • Filter PEDOT:PSS using a 0.45 µm PVDF filter
  • Dispense 35 µl of the filtered PEDOT:PSS solution onto ITO spinning at 6000 rpm for 30s
  • Place substrate onto a hotplate at 120°C
  • After all ITO substrates are coated, reduce the hotplate temperature to 90°C
  1. Perovskite deposition (in air):
  • Heat I101 ink for at least 2 hours at 70°C to allow for complete re-dissolution of solutes
  • Transfer heated substrate onto spin coater, start spinning at 4000 rpm and dispense 30 μl of I101 ink and leave to spin for 30 s
  • Place substrate back onto the hotplate at 90°C for 120 minutes
  • After all ITO substrates are coated, reduce the hotplate temperature to 90°C
  • After annealing transfer the substrates into a glovebox environment.
  1. PC70BM deposition (in nitrogen glovebox):
  • Prepare a solution of PC70BM at 50 mg/ml in chlorobenzene and stir for 3 to 5 hours
  • Transfer perovskite-coated substrates into the glovebox
  • Dispense 20 µl of PC70BM solution onto the spinning substrate at 1000 rpm and spin for 30s
  • Use a micro-precision cleaning swab soaked in chlorobenzene to wipe the cathode strip clean
  1. Cathode deposition:
  • Using thermal evaporation, sequentially deposit 5 nm of calcium and 100 nm of aluminium through a shadow mask to define an active area for your device
  • Encapsulate devices using a glass coverslip and encapsulation epoxy
  • Expose to UV radiation (350 nm) for ~5 minutes (times vary depending upon source intensity) to set the epoxy

 

Wistia video thumbnail - Guide to make efficient air processed perovskite devices

 

Full length fabrication guide detailing all steps necessary for the fabrication and measurement of perovskite solar cells using Ossila I101 Perovskite Precursor Ink.

 

I101 Device Performance

Below is information on photovoltaic devices fabricated using our standard architecture and inverted architecture recipes for I101 inks. All scans were taken after 10 minutes under illumination of an AM1.5 source, using a voltage sweep from -1.2 V to 1.2 V then from 1.2 V to -1.2 V at a rate of 0.2 V.s-1; no bias soaking was performed on devices.

ArchitectureStandardInverted
Sweep DirectionForwardReverseForwardReverse
Power Conversion Efficiency (%)13.513.712.413.1
Short Circuit Current (mA.cm-2)-20.8-20.8-18.8-18.8
Open Circuit Voltage (V)0.880.900.960.96
Fill Factor (%)73736972

 

I101 standard and inverted architecture perovskite solar celll iv curvesJV curve under AM1.5 irradiation for a standard (left, courtesy of Michael Stringer-Wong, University of Sheffield) and inverted (right, courtesy of Alex Barrows, University of Sheffield) device based on Ossila's I101 ink. Device characteristics were recorded on a reverse sweep.

 

想了解更詳細的產品信息,填寫下表直接與我們聯系:

留言框

  • 產品:

  • 您的單位:

  • 您的姓名:

  • 聯系電話:

  • 常用郵箱:

  • 省份:

  • 詳細地址:

  • 補充說明:

  • 驗證碼:

    請輸入計算結果(填寫阿拉伯數字),如:三加四=7
深圳市澤拓生物科技有限公司 專業提供:大小鼠解剖器械包,瑞士Sipel真空泵,美國EMS電鏡耗材
深圳市澤拓生物科技有限公司版權所有   |   技術支持:化工儀器網
聯系電話:0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號:粵ICP備17105262號  管理登陸
在線客服
国产综合久久久久_国产精品爽爽va在线观看无码_榴莲榴莲榴莲榴莲官网_亚洲色国产欧美日韩
久久综合久久99| 日韩欧美一二区| 色视频一区二区| 色综合色综合色综合 | 日韩欧美国产三级电影视频| 欧美一区二区大片| 亚洲精品在线三区| 国产精品女主播av| 亚洲综合免费观看高清完整版在线| 一区二区三区国产豹纹内裤在线| 夜夜爽夜夜爽精品视频| 日韩精品成人一区二区在线| 韩国在线一区二区| 成人免费福利片| 色88888久久久久久影院野外| 欧美日韩一区二区欧美激情| 欧美放荡的少妇| 日韩免费观看2025年上映的电影| 久久久99精品久久| 亚洲乱码日产精品bd| 日韩av二区在线播放| 国产成人午夜99999| 在线视频一区二区三| 欧美大白屁股肥臀xxxxxx| 国产精品色一区二区三区| 亚洲大片精品永久免费| 国产乱码精品一区二区三区忘忧草| 成人免费黄色大片| 91精品国产手机| 中文字幕一区二区三中文字幕| 亚洲国产欧美另类丝袜| 国产91精品一区二区麻豆亚洲| 欧美这里有精品| 久久精品免视看| 午夜精品久久久久久久久| 成人亚洲一区二区一| 91精品国产欧美一区二区18| 中文字幕亚洲一区二区av在线| 日本亚洲视频在线| 日本高清无吗v一区| 久久久99精品免费观看不卡| 偷拍自拍另类欧美| 91香蕉国产在线观看软件| xvideos.蜜桃一区二区| 亚洲成人先锋电影| 91日韩在线专区| 亚洲国产成人午夜在线一区| 老司机一区二区| 欧美日韩情趣电影| 一区二区高清在线| 91香蕉视频mp4| 国产精品久久久久久久浪潮网站 | 91国偷自产一区二区使用方法| 欧美精品一区二区精品网| 亚洲电影激情视频网站| 91国产免费观看| 亚洲乱码日产精品bd| av电影天堂一区二区在线观看| 26uuu亚洲综合色欧美| 免费在线成人网| 欧美精品欧美精品系列| 一区二区三区四区国产精品| a亚洲天堂av| 国产精品不卡视频| www.日韩在线| 亚洲人成网站影音先锋播放| www.久久久久久久久| 国产精品久久777777| 不卡的av在线播放| 中文字幕在线观看不卡视频| 99久久精品免费看国产| 亚洲裸体xxx| 在线观看网站黄不卡| 亚洲国产欧美在线| 欧美顶级少妇做爰| 免费在线成人网| www激情久久| 成人av网址在线| 亚洲欧洲综合另类| 欧美日韩中文字幕精品| 日韩成人伦理电影在线观看| 欧美一区二区视频在线观看2020| 日日摸夜夜添夜夜添国产精品| 欧美一区二区在线播放| 国产麻豆视频一区| 中文字幕中文字幕一区二区| 日本乱人伦一区| 日产欧产美韩系列久久99| 2021国产精品久久精品| 成a人片国产精品| 亚洲一区在线观看网站| 日韩欧美另类在线| 成人一区二区三区在线观看| 亚洲综合视频在线观看| 欧美成人a在线| 99视频在线精品| 日韩高清在线电影| 国产女同互慰高潮91漫画| 色天天综合久久久久综合片| 日韩精品高清不卡| 国产精品人成在线观看免费| 欧美日韩免费一区二区三区视频| 韩国视频一区二区| 亚洲精品成a人| 亚洲精品在线观看视频| a亚洲天堂av| 日产欧产美韩系列久久99| 国产欧美一区二区精品仙草咪| 在线观看欧美精品| 国产精品一区在线观看乱码| 亚洲一区二区av在线| 国产亚洲综合色| 欧美一区二区三区白人| 91最新地址在线播放| 韩国三级电影一区二区| 一区二区三区加勒比av| 国产日韩欧美制服另类| 欧美一区二区三区免费视频| 91玉足脚交白嫩脚丫在线播放| 老司机精品视频在线| 亚洲一区二区av在线| 国产精品嫩草久久久久| 精品国产人成亚洲区| 欧美二区三区的天堂| 色综合久久六月婷婷中文字幕| 国产乱子伦一区二区三区国色天香| 亚瑟在线精品视频| 日韩毛片精品高清免费| 久久久久久久电影| 欧美r级在线观看| 欧美喷潮久久久xxxxx| 日本高清视频一区二区| av一区二区三区四区| 国产成人精品三级| 九九精品视频在线看| 麻豆久久久久久久| 青娱乐精品视频| 免费久久99精品国产| 日本v片在线高清不卡在线观看| 亚洲国产你懂的| 亚洲韩国一区二区三区| 亚洲一区二区三区中文字幕| 亚洲欧美日韩国产中文在线| 中文字幕在线不卡一区| 亚洲欧洲另类国产综合| 自拍av一区二区三区| 亚洲日本丝袜连裤袜办公室| 亚洲视频免费在线观看| 亚洲免费资源在线播放| 一区二区三区视频在线看| 夜夜揉揉日日人人青青一国产精品| 亚洲欧美视频在线观看视频| 亚洲欧美一区二区久久| 亚洲自拍偷拍麻豆| 五月婷婷色综合| 久久精品国产一区二区三区免费看| 日本成人在线网站| 久久国产精品区| 国产a区久久久| 91蜜桃免费观看视频| 欧美视频一区在线| 欧美一区二区三区在线| 欧美精品一区二区三区蜜桃视频| 久久久不卡影院| 亚洲激情网站免费观看| 日本怡春院一区二区| 国产精品456| 91福利国产成人精品照片| 6080午夜不卡| 国产欧美一区二区精品秋霞影院| 中文字幕一区二区三区av| 亚洲国产精品一区二区久久| 美女网站视频久久| 不卡区在线中文字幕| 欧美三级资源在线| 久久久91精品国产一区二区三区| 国产精品久久久久7777按摩| 丝袜美腿亚洲色图| 成人免费看黄yyy456| 正在播放亚洲一区| 日本一区二区电影| 三级久久三级久久| 懂色av一区二区三区免费观看| 日本韩国一区二区| 国产亚洲精品福利| 丝袜美腿亚洲一区| 99精品国产一区二区三区不卡| 6080亚洲精品一区二区| 国产欧美日韩麻豆91| 午夜在线电影亚洲一区| 成人avav在线| 欧美精品一区二区在线观看| 一区二区三区在线观看动漫| 国产一级精品在线| 欧美精品电影在线播放| 自拍偷拍亚洲欧美日韩| 国产一区在线精品| 欧美一二三区精品| 亚洲一卡二卡三卡四卡| 99亚偷拍自图区亚洲|